קימור כדור הארץ קובע מאיזה מרחק נוכל לצפות בעצמים רחוקים. אז מאיפה באמת אפשר לראות את הפסגה המושלגת?

כל מדריך טיולים ראוי לשמו מכיר את הטקס הזה: אתה עומד מול קבוצה ומשקיף איתם על הנוף (המרהיב!), מסביר על העמק שרואים מימין ועל ההיסטוריה של התל משמאל ואז, בנונשלנטיות, אתה מצביע צפון מזרחה ואומר, "ביום טוב רואים מכאן את החרמון". רק מעטים מהמטיילים יטרחו לחשוב על הגיאומטריה של כדור הארץ, ואם זה באמת מתקבל על הדעת מהמקום שאתם נמצאים בו.

כבר בעבר הרחוק הבינו מדענים שכדור הארץ הוא כדורי. אריסטו, לדוגמה, צפה בקבוצות כוכבים שונות מאזורים אחרים בכדור הארץ והסיק שתצפיותיו ייתכנו רק אם כדור הארץ עגול. בשנת 240 לפני הספירה העריך המלומד והאסטרונום היווני אֶרַטוֹסְתֶנֶס את קימור כדור הארץ על ידי מדידת הצל שמטיל עמוד אנכי על הקרקע בשני מקומות שונים, על פי השוואת המדידות והמרחק ביניהן הוא חישב שהיקף כדור הארץ הוא כ-46,250 קילומטר - שגיאה של כ-15 אחוז בלבד.

מכיוון שאור נע פחות או יותר בקו ישר, יש קצה לאופק שאנו יכולים לראות. אפשר לבדוק את זה בקלות אם הולכים לים לקראת השקיעה ויושבים על החול. אם נקום במהירות ברגע שהשמש שקעה לחלוטין מאחורי האופק, נגלה שאנחנו רואים את קצה השמש מבצבץ מחדש בגבול בין הים לשמיים.

גיאומטריה של תצפית

אז מאיפה באמת אפשר לראות את החרמון? כדי לגשת לסוג כזה של בעיה נניח כמה הנחות שיעזרו לנו לפשט אותה. לצורך העניין נתעלם מהאליפטיות של כדור הארץ ונניח שהוא כדור עגול לחלוטין ברדיוס של 6,378 קילומטר. כמו כן נניח שאין בו טופוגרפיה – כלומר אין הרים וגבעות שיחסמו את שדה הראייה שלנו. ולבסוף, נניח שהראות האטמוספרית טובה, כלומר אנחנו באמת נמצאים "ביום טוב" והאטמוספרה צלולה לחלוטין, בלי חלקיקי אבק שיעכירו אותה.

ראייה מבוססת על אור – קרינה אלקטרומגנטית שמגיעה לעינינו מהאובייקט שאנו צופים בו. לכן, על מנת שנוכל לראות עצם כלשהו, צריכה להיות לנו אפשרות למתוח קו ישר בינו לבין העין שלנו, בלי הפרעות בדרך. כעת מספיקה לנו גיאומטריה פשוטה כדי לגשת לבעיה.

ראשית, נתאר כדור שמרכזו בנקודה C. עליו נבנה משולש שקודקוד אחד שלו נמצא במרכז המעגל, השני בעיני הצופה (נקודה O) והשלישי בנקודה הכי רחוקה שאליה אפשר לצפות באופק (H). מכיוון ש-H משיקה למעגל היא יוצרת זווית ישרה (90 מעלות) עם הרדיוס, כך שנוכל להשתמש במשפט פיתגורס לחישוב המרחק בין הצופה לאופק (OH).

החישוב הזה נעשה על קו ישר, ששונה מעט מהמרחק שאנו רגילים לחשב על הקרקע בינינו לבין האופק – שהוא למעשה הקשת של הכדור. בכל אופן, בגבהים שאנחנו מדברים עליהם התוצאות יוצאות כמעט זהות. את רדיוס כדור הארץ (r) ואת גובה האדם או המגדל שעליו אנו עומדים (v) אנחנו יודעים ויכולים לחשב בהתאם את אורכן של שתיים מצלעות המשולש ולקבוע לפיהן את אורך השלישית. לנוחותכם יש מחשבון שמחשב את המרחק של האופק מאיתנו בהתאם לגובה העין מעל פני הקרקע.

משמאל:מאיזה מרחק יכול הצופה (O) לראות את האופק. כך אפשר לחשב גם את המרחק שרואים את פסגת ההר מהקרקע (ימין)
משמאל: מאיזה מרחק יכול הצופה (O) לראות את האופק. כך אפשר לחשב גם את המרחק שרואים את פסגת ההר מהקרקע (ימין) 

מכיוון שאנו מניחים שהאור נע בקו ישר, קצה האופק הנראה מפסגת החרמון נמצא במקום הרחוק ביותר שממנו עדיין נוכל לראות את פסגת ההר, שנמצאת בגובה של 2,814 מטר מעל פני הים. החישוב מגלה שאפשר לראות את הפסגה מגובה פני הים עד למרחק של כ-190 קילומטר ממנה בקו ישר (אורך הקשת הוא 190.3 קילומטר), תחת ההנחות שציינו. ומכאן, אפשר להלכה לראות את פסגת החרמון ביום טוב אפילו מראשון לציון.

מגדל תצפית לקפריסין

בפועל המצב כמובן מורכב יותר, כיוון שרכס ההרים של הגליל, ובכלל זה התבור והר מירון, חוצץ בין החרמון לערי מישור החוף ומגביל את התצפית. החישוב יהיה מדויק למדי אם בין הצופה לבין האופק יש מישור – אפשר למשל לחשב כך לאיזה מרחק אנו יכולים לצפות כשאנו משקיפים לעבר הים. נגלה שאדם שגובה עיניו מעל הקרקע הוא 1.80 מטר יכול לראות למרחק של כ-4.8 קילומטרים.

לאור זה, מהו גובה המגדל שנצטרך לבנות בתל אביב אם נרצה לראות מגגו את קפריסין? ובכן, אם ניקח בחשבון שהמרחק מחוף גורדון בתל אביב לנמל לימסול הוא כ-320 קילומטר, נגלה שכדי לצפות משם לעבר האי השכן נצטרך לבנות מגדל בגובה של כשמונה קילומטרים – כמעט כמו ההר הגבוה בעולם – האוורסט.

החישובים האלה כאמור אינם מדויקים לגמרי ומתעלמים מתופעות פיזיקליות נוספות כמו השפעת האטמוספרה על מסלול התקדמות האור. אחרי הכול אור הוא גל אלקטרומגנטי, ולפי עקרון פרמה בתור גל הוא אינו מתקדם בקו ישר אלא בדרך שזמן תנועתו בה הוא הקצר ביותר.

כעת נוכל לענות למדריך הטיולים בחישוב מדויק שמראה אם באמת אפשר לראות מפה את החרמון ביום טוב.

13 תגובות

  • יפעת

    צלם בשם שמשון צילם מחוף

    צלם בשם שמשון צילם מחוף אשקלון למרחק של 1000 קלו וראה את ההר הגבוה בהדרו ללא שום קימור.
    צאו ובדקו.

  • טוב שם משמן טוב

    יש סתירה במאמר. בתחילת המאמר

    יש סתירה במאמר. בתחילת המאמר אתם מציינים שהאור נע בקו ישר כעובדה אך בהמשך אתם מניחים שהוא נע בקו ישר ("מכיוון שאנו מניחים שהאור נע בקו ישר") כלומר אתם לא בטוחים שהאור נע בקו ישר ומנסים להתאים את המציאות להנחות שלכם? המציאות היא שלמדענים פרוגרסיבים מותר לשנות את המציאות

  • שמעון

    הוכחה שהארץ שטוחה

    כיום נתן לראות מרחקים עצומים
    ע"י טלסקפ' אנמפרה אדום מקצועי
    ללא בינה מלאכותית מגובה אדם
    יותר מ-3000 ק"מ ללא צורך תצפית
    ממגדל בגובה כ-8 ק"מ
    אפילו החזאים של מזג האוויר כדי לדעת
    מרחקים של עננים
    הם משתמשים בלייזר ע"י בלוני אליום
    למרחק יותר מ6000 ק"מ
    זה הוכחה שהארץ שטוחה בפנים

  • שמעון

    כיום נתן לראות מגובה אדם ע"י

    כיום נתן לראות מגובה אדם ע"י
    טלסקפ' אנפרה אדום מקצועי
    ללא בינה מלאכותית
    יותר מ-3000 ק"מ בלי בלי לבנות
    ללא צוריך בניית מגדל כ-8 ק"מ
    אפילו החזאים משתמשים בלייזר
    ע"י בלוני אליום למרחקים
    יותר מ6000 ק"מ לדעת מרחקם
    זה הוכחה שהארץ שטוחה בפנים

  • משה

    שאלה לי

    אם עכשיו אני טס במטוס רק קדימה כמה קילומטרים, האם אני אראה במכשירים שאני מתרחק מהאדמה
    אם לא זה קצת מוזר.. עם כל הכבוד לכוח הכבידה, הרי המטוס מתנגד לכוח הזה לכן הוא באויר

  • אנונימי

    קימור בכינרת

    איך אני רואה מהחוף של הכנרת את החוף בצד השני
    הרוחב של הכנרת הוא 10 קילומטר מטבריה לצד השני זה אומר לקימור של 8 מטר, אני מהטיילת רואה בירור את מלון כינר ממול

  • משה

    שאלה מצויינת שגם אני רציתי לשאול

    וראיתי שאדם עשה ניסוי בכינרת, מצד אחד שם מצלמה על פני המים ומצד שני במרחק של 9-10 קילומטר מישהו סינוור אותם עם מראה וראו את הסינוור..

  • שחר

    זו שאלה טובה

    מעניין למה לא ענו לך עליה...

  • נחשון מייסון

    שאלה לגבי החישוב של מרחק הראיה

    שאלה לגבי החישוב
    לא הבנתי איך יצא כך. אני חישבתי ויצא לי תוצאה אחרת לחלוטין. לגבי הר חרמון אז מוסיפים את הקילומטרים שלו לרדיוס של כדור הארץ ויוצא (2814+6378=) 9192. עושים בריבוע ויוצא 84492864. מורידים מכך את רדיוס כדור הארץ בריבוע (40678884) יוצא 43813962. עושים שורש של התוצאה ויוצא 6619.2. כלומר שאפשר לראות עד מרחק כזה ולא רק 190 קילומטר?

  • מ.א.ה

    טעות בידך...

    טעות בידך...
    גובה החרמון הוא במטרים 2814 מטר שהם 2.814 ק"מ. אותם תוסיף לרדיוס כדור הארץ בקילומטרים, וייצא לך נכון

  • לל

    שאלה לא קשורה אבל אני רואה שאתה עונה

    בענין uv
    רציתי לקנות ברשת משקפי שמש, מבחינת הגנה היה כתוב עליהם filter category 3
    ניסיתי בגוגל ולא מצאתי תשובה חד משמעית אם זה עונה על ההגדרה של מסנן uv ברמה שמקובל בישראל

  • גיא רווה

    שדרוג נוסף

    לא התייחסתם למקרה - הריאלי למדי - בו הצופה בעצמו עומד על גבעה או אפילו הר אחר. לדוגמה, ירושלים נמצאת במרחק גבולי לפי החישוב המוצג, אך (עפ"י ויקיפדיה) גובהה 754 מ', ולכן צריך להיות אפשרי לראות ממנה את החרמון בלי בעיה, אם אין פסגה אחרת שמסתירה אותו - המרחק האווירי הדרוש עבור גובה כזה הוא כ-287.5 ק"מ, שזה הרבה מעל המרחק בין החרמון לירושלים.

  • ערן

    אטמוספירה

    היי גיא, אתה צודק. במקרה של קרקע מה שבדרך כלל מפריע לראות למרחקים הוא הנראות באטמוספירה ולא קימור כדור הארץ. רוחות מעלות גרגרי אבק שפוגעות ביכולת שלנו לראות למרחק.
    לעומת זאת כאשר מסתכלים לעבר האופק בחוף הים קימור כדור הארץ הוא הרבה פעמים האפקט הדומיננטי. בוודאי כאשר מסתכלים על גוף בהיר כמו השמש.